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It is shown that the accelerated expansion of the universe in the framework of the relativistic theory of
gravitation can be achieved by the introduction of the quintessential term in the energy-momentum tensor.
The value of the minimum scaling factor and the modern observational data for the density and state
parameters of the matter give the rough estimations for the maximum graviton mass and the maximum
scaling factor. The former can be very low in the case of the primordial inflation and the latter can be
extremely large for the scalar field model of the quintessence. In any case, the massive gravitons stop the
second inflation and provide the closed cosmological scenario in the agreement with the causality principle
inherent to the theory.

1 Introduction

The relativistic theory of gravitation (RTG) [1, 2, 3] disagrees with the Einstein’s general relativity
(GR) in the crucial point: it denies the total geometrization and considers the gravitation on the
basis of the classical Faraday-Maxwell’s field approach. This means that there is the topologically
simple background spacetime of the Minkowski type, which can be restored in any situation. As a
result, we can detach the physical content from the arbitrary geometrical game with co-ordinates.
This converts the gravitation from the tensor-geometrical concept to the tensor-field one and puts
it on the unified level with the another fields.

Formally, the RTG can be considered as the bi-metric theory of the gravitation [4, 5]. However,
in the RTG the effective Riemannian spacetime produced by the gravitational field is essentially
separated from the Minkowski background because the latter is presented in the field equations
(see next section). Naturally, this transforms the solutions of the field equations and has the pro-
nounced physical consequences. For example, the singularity disappears and the graviton acquires
the nonzero mass. Nevertheless, the basic observational consequences of the RTG coincide with
those in the GR (for instance, Mercury perihelion motion, time delay and spectral shift in the
gravitational field, see [2]).

The application of the RTG for the cosmology produces some astonishing results, viz., in virtue of
the field equations the Friedmann-Robertson-Walker cosmology admits only the flat global efficient
Riemannian spacetime without an initial singularity and with an oscillating time behavior [2, 3].
The initial expansion is stimulated by the antigravitation, which is caused by the massive gravitons
in the strong gravitational fields. The initial temperature is defined by the graviton mass and can
be too low to create the undesirable relics (e.g. monopoles). So, the problems of the cosmological
spacetime flatness, the source of the initial expansion, the cosmological singularity and the absence
of the relics find in the RTG a natural solution. However, in this theory there are some disagreements
with the modern observational data. As it is known, the latter suggests the accelerated expansion
of the universe at present (see, for example, [6, 7]). But in the RTG the accelerated expansion is
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possible only during a very short stage of the initial evolution and the subsequent expansion has a
definitely decelerated character.

As it is well known, the accelerated cosmological expansion in the framework of the GR can be
obtained “by hand” due to an insertion of the so-called cosmological constant in the field equations
(for a review see [8]). This constant can be considered as a part of the geometrical structure of the
GR because it is a natural consequence of the variational principle [9]. Alternatively, it is possible
to treat the cosmological constant as the vacuum zero-point energy. But in the both cases its value
is too small and can not be attributed to any known physical scale.

The situation in the RTG is more complicated by virtue of the vacuum stability principle: the
absence of the material fields reduces the effective Riemannian spacetime to the Minkowski one.
Hence, the cosmological constant can not be introduced by hand and is to have the gravitational
nature concerned with the nonzero graviton mass. As a result, the cosmological constant-like action
of the massive graviton in the RTG produces the deceleration of the cosmological expansion.

Nevertheless there exists an approach, which considers the accelerated expansion of the universe
as a manifestation of some matter possessing an unusual equation of the state p = wρ (where p is
the pressure and ρ is the density). This matter usually is called as the X-matter or quintessence.
If its state parameter w lies between the limits of the strong and week energy conditions (i.e.
−1 ≤ w ≤ −1

3), the domination of such matter produces a repulsion causing the accelerated
expansion of the universe [10]. The best candidate here is a certain scalar field whose potential
energy dominates at present (the survey can be found in [11], for example).

In this article we shall consider the implementation of this idea in the RTG framework. As
a result, some restrictions on the key parameter of the theory, i. e. the graviton mass, will be
obtained.

2 Basic equations

The field equations for the gravitational field in the framework of the RTG is based on the assump-
tion that the universal character of the gravitation allows to introduce the effective Riemannian
spacetime [3]:

g̃µν = γ̃µν + %̃µν , (1)

where g̃µν =
√
−ggµν , γ̃µν =

√
−γγµν , %̃µν =

√
−γ%µν are the densities of Riemannian metric

tensor, Minkowski metric tensor and gravitational field tensor, respectively. In this case the La-
grangian density for the gravitational field is the function both %̃µν and γ̃µν . It is essential that the
effective Riemannian spacetime is completely defined for the given Minkowski co-ordinates, i. e. gµν

is their single-valued function. Hence, the topology of the effective spacetime is quite simple. Let
us consider the infinitesimal transformation of coordinates by means of the translation vector ζµ:

xµ´= xµ + ζµ. (2)

Then the field-dependent metric density of the effective spacetime is changed as:

g̃µν´= g̃µν + δζ g̃
µν + ζλDλg̃

µν , (3)

δζ is the Lie variation and Dλ is the covariant derivative on the Minkowski (i.e. background) space-
time. If the Lagrangian density for the gravitational field depends only on g̃µν and its derivatives,
then the transformation (3) changes this density only on a divergence. Bsing on (3) the crucial
issue is the definition of the gauge group preserving the field equations and background metrics.
Let’s Eq. (3) describes the transformation produced by the infinite-dimensional gauge group with
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the gauge vector ζµ. In contrast to the coordinate transformation, this gauge transformation does
not effect the background: δζ g̃

µν = δζ %̃
µν .

The simplest Lagrangian density, which is changed only on a divergence by this gauge transfor-
mation, can be constructed from

√
−g and <̃ =

√
−g< (< is the scalar curvature of the effective

spacetime). Let us define (see [2, 3]) the scalar curvature density through the tensor Fµνλ:

F
µ
νλ =

1

2
gµκ (Dνgκλ +Dλgκν −Dκgνλ) . (4)

Then
<̃ = −g̃µν

(
F λµνF

κ
λκ − F

λ
µκF

κ
νλ

)
−Dν

(
g̃µνF κµκ − g̃

µκF νµκ
)
. (5)

Hence, the required density resulting in the field equation with the derivatives up to second order
has the following form:

Lg = −ω1g̃
µν
(
F λµνF

κ
λκ − F

λ
µκF

κ
νλ

)
+ ω2

√
−g, (6)

where ω1 and ω2 are the some constants.
However, the structure of the Lagrangian density (6) does not allow to include the background

metrics in the field equations. Therefore we have to add in Eq. (6) the terms explicitly containing
γµν and violating considered gauge group [3, 12]. The term γµν g̃

µν obeys the transformational
properties under consideration but only for the gauge vectors:

gµνDµDνζ
λ = 0. (7)

Resulting Lagrangian density for the gravitational field is:

Lǵ = −ω1g̃
µν
(
F λµνF

κ
λκ − F

λ
µκF

κ
νλ

)
+ ω2

√
−g + ω3γµν g̃

µν + ω4
√
−γ, (8)

here the last term is introduced to provide the vacuum stability, i.e. to exclude the cosmological
constant-like term in the absence of the matter.

From the variational principle for the gravitational field (
δLǵ
δg̃µν = 0), the vacuum stability re-

quirement and taking into account the material sources for the gravitational field we can obtain
from (8) the field equation:

Gµν −
m2

2

(

δµν + gµλγλν −
1

2
δµν g

κλγκλ

)

= −
8πκ
c4

Tµν , (9)

where m2 = (mgc�~)2, κ is the Newtonian gravitational constant, mg is the graviton mass as a
natural interpretation of the constants ω incoming in the Lagrangian density, Gµν is the Einstein
tensor. Below we shall use c = ~ = 1, then mpl = 1�

√
8πκ = 2.43×1018 GeV is the reduced Planck

mass. It should be noted, that the mass of graviton results from the gauge group violation, i.e. it
appears together with the background metrics in the Lagrangian. Otherwise we have the usual
Einstein-Gilbert field equation (without cosmological constant) and the background spacetime loses
its physical meaning.

Now let us consider the physical sense of the constraint (7). As a matter of fact, the introduced
simplest modification of the Lagrangian by the term γµν g̃

µν violating the gauge group results in the
equation:

Dµg̃
µν = 0, (10)

which is the consequence of the field equation and defines the polarization of the gravitational field
(spin states 2 and 0) [12]. So, the structure of the mass part in the field equation and the field
polarization are interdependent.
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Now we have to consider an important consequence of the considered bi-metric approach. The
point is that the existence of the physically meaningful background spacetime imposes the causality
principle, which constraints the permissible solutions in the RTG. This background defines the
observable events and the corresponding relations between them. These relations always can be
attributed to the Minkowski spacetime. Hence, the causality cone of the effective Riemannian
spacetime should be positioned inside the causality cone of the Minkowski spacetime [13]:

γµνu
µuν = 0, (11)

gµνu
µuν ≤ 0,

where uµ is the arbitrary isotropic vector.

The cosmological equations in the RTG can be obtained on the general basis. However, we have
to take into account that the formally arbitrary choice of the convenient gµν , which is a typical trick
in the GR, is not always appropriate in the RTG because of it implies the simultaneous constraints
on γµν .

Let us consider the homogeneous and isotropic Riemannian spacetime induced by the global
gravitational field. As it was above mentioned, this spacetime in the framework of the RTG is
flat. This is a consequence of the field equations (see [2, 3, 14]). The corresponding interval in the
spherical coordinates is [3]:

ds2 = dτ2 − αa (τ)
[
dr2 + r2

(
dθ2 + sin (θ)2 dφ2

)]
, (12)

where τ is the proper time, a (τ) is the scaling factor and α is the constant of integration (its
meaning see below).

Let’s the background is described by the Galilean metrics. Eqs. (12, 11) result in [3]:

a (τ)4 − α < 0, (13)

which eliminates the cosmological solution with the eternal expansion. This is a consequence of the
causality principle in the RTG. It is convenient to assign α = a4

max, where amax is the maximum
scaling factor.

Then the cosmological equations are:

( ·
a

a

)2

=
ρ (τ)

3m2
pl

−
m2

12

(

2 +
1

a (τ)6 −
3

a (τ)2 a4
max

)

, (14)

··
a

a
= −

ρ (τ) + 3p (τ)

6m2
pl

−
m2

6

(

1−
1

a (τ)6

)

, (15)

and a (τ) ≤ amax. ρ and p are the matter density and pressure, respectively; the dot denotes the
derivative with respect to τ . These equations are similar to those in the GR with the flat global
spacetime but 1) to contain the terms describing the massive graviton and 2) to suppose the increase
of a up to some maximum scaling factor amax as a result of the causality principle.

3 Cosmological scenarios in the RTG and constraints on the gravi-
ton mass

Before an examination of the cosmological scenarios, let us consider the possible embedding of
the effective Riemannian spacetime in the background with the constant curvature of the same
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dimension. The hyperbolic background has to be rejected due to the causality principle violation.
The causally connected events in the effective spacetime are asymptotically causally independent
on the background.

a4 ≤
α

1 + r2
−→
r→∞

0. (16)

However, the spherical background obeys the causality principle. The corresponding global
Riemannian spacetime is spherical, too. Then the cosmological equations have the modified form:

( ·
a

a

)2

=
ρ

3m2
pl

−
m2

12

(

2 +
1

a6
−

3

a2a4
max

)

−
1

a2a4
max

, (17)

··
a

a
= −

ρ+ 3p

6m2
pl

−
m2

6

(

1−
1

a6
+

3
(
1− Σ2

)

4a2a4
max

)

, (18)

where Σ is the background curvature, amax = Σ.
Turning back we can conclude that, although it is possible to embed the effective spacetime

into the spherical background, there are no some physical justifications for such complication of the
model. Nevertheless, the extension of the background dimensionality requires an additional analysis
but this exceeds the limits of this article [15].

Let us return to Eqs. (14), (15) and consider their structure. It is clear that the fulfilment
of the causality principle requiring only closed evolutional scenarios results from the first term in
the brackets of Eq. (14). This term produced by the massive graviton plays a role of the negative
cosmological constant, which stops any cosmological expansion of the universe with the arbitrary
material filling if the state parameter for its dominating form is w > −1. The corresponding
minimum density is connected with the graviton mass and the maximum scaling factor [3]:

ρmin =
m2m2

pl

2

(

1−
1

a6
max

)

. (19)

On the other hand, the second term in the brackets of Eq. (15) causes the graviton mass
induced repulsion (antigravitation) in the strong gravitational fields when the scaling factor is small.
This repulsion prevents from the existence of the initial cosmological singularity and provides the
acceleration at the initial stage of the universe expansion. However, as one can see from Eq. (15),
out of this initial stage there is only decelerated expansion up to amax if the state parameter for
the dominating form of the matter is w > −1

3 . We remind, that as a result of the vacuum stability
principle (i.e. due to gµν −→

Tµν−→0
γµν) the cosmological constant in the RTG has only gravitational

nature and its sign is negative (i.e. it causes the attraction on the large scales). Here we face the
challenge of the disagreement with the modern observational data.

The data obtained from the BOOMERANG, MAXIMA and COBE projects [6, 7, 16] suggest
the accelerated expansion of the universe at present. The acceleration parameter can be estimated
as q ≡

(
d2a�dτ2

)
|0 �

(
a0H

2
0

)
' 0.33±0.17 and has a positive value (here H is the Habble constant

and the zero index refers to the present epoch when τ = τ0). On the whole the data are summarized
in Table 1 (see also [17]).

The age of the universe τ0 is estimated from the age of the oldest globular clusters. Ωm ≡

ρm�
(

3m2
plH

2
0

)
is the density parameter of the “normal” matter at present. The word “normal”

means that this matter possesses the state parameter w ≥ 0. Such matter can only decelerate the
cosmological expansion. However, the detailed structure of this “normal” sector of the matter is
unknown. The baryons contribution amounts only ' 5% in the total density and the rest of the
matter sector belongs to the so-called cold dark matter, which is not revealed to day.
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Table 1. Cosmological parameters.

Cosmological parameters. Observational data

H0, km� (s ·Mps) 68± 6

Ωtot 1.11± 0.07

Ωm 0.37± 0.07

Ωr (9.34± 1.64)× 10−5

Ωx 0.71± 0.05

τ0, Gyr 12.7± 3

w ≤ −0.6

q 0.33± 0.17

The similar parameter for the photons is Ωγ ≡ ργ�
(

3m2
plH

2
0

)
= 2.51×10−5h−2 ' (5.56± 0.97)×

10−5 (here H0 ≡ 100 × h km� (s ·Mps) ), and for the massless neutrino Ων = 0.681 × Ωγ [18].
Then for the relativistic matter (“radiation”) we have Ωr ' (9.34± 1.64)× 10−5.

The accelerated expansion of the universe suggests that the main part of the density in the
universe belongs to some exotic “dark energy” or “X-matter” with the density parameter Ωx and
the state parameter w ≤ −0.6. The latter provides the negative pressure and, as a consequence,
the acceleration of the universe expansion.

The parameter Ωtot ≡ Ωx+Ωm+Ωr defines the curvature of the effective Riemannian spacetime
in the GR through the so-called cosmic sum rule: Ωtot + ΩK = 1, where ΩK ≡ −K�

(
a2

0H
2
0

)
and

K = 1, − 1 and 0 for the spherical, hyperbolic and flat spacetimes, respectively. As Ωtot ' 1 at
present [19], this requires the fine tuning at past (for example, if we start from the Planck scale the
deviation from the unity at the beginning of the expansion is about of 10−60 [20]). There is no such
problem in the RTG because the flatness of the homogeneous and isotropic Riemannian spacetime
is the consequence of the field equations.

Now let us consider the possible modifications of the cosmological scenarios in the frame-
work of the RTG, which provide the agreement with the modern observational data. To ob-
tain the accelerated expansion at present we modify the energy-momentum tensor by the inser-
tion of the quintessence term with the negative pressure. The practically interesting candidate
for the quintessence is some scalar field φ, which evaluates slowly in a runaway potential V (φ):
V (φ) −→

φ−→∞
0 [21, 22, 23].

In the beginning let’s consider the problem phenomenologically and introduce the quintessential
term with the constant state parameter wx = px�ρx lying in the limits of the strong and week
energy conditions: −1 < w < −1�3 [24, 25]. It is convenient to suppose that at present a (τ0) = 1
and to transit from the densities to the density parameters. Then Eq. (14) can be rewritten as:

H (τ)2 = H2
0× (20)

[
Ωr

a (τ)4 +
Ωm

a (τ)3 +
Ωx

a (τ)(3+3wx)
− Ωg

(

1 +
1

2a (τ)6 −
3

2a (τ)2 a4
max

)]

,

where we used ρ (τ) ∝ a (τ)−3(1+w) and introduced Ωg = m2�
(
6H2

0

)
(the density parameter for

the massive graviton).
We can see from Eq. (20) that the massive graviton modifies the cosmic sum rule

Ωr + Ωm + Ωx −
3

2
Ωg

(

1−
1

a4
max

)

= 1, (21)
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which is like that for the spherical curvature of the effective Riemannian spacetime (amax � 1).
This similarity results from the negative cosmological constant-like action of the gravitons. Note
however that in fact the spacetime is flat.

The substitution t = H0 (τ − τ0) in Eq. (15) produces (this substitution simply omits H2
0 from

the right-hand side of Eq. (20)):

d2a (t)

dt2
= −

Ωm

2a (t)2 −
Ωr

a (t)3 −
1 + 3wx

2a (t)(2+3wx)
− Ωg

(

a (t)−
1

a (t)5

)

. (22)

Eqs. (20), (22) result in the expression for the acceleration parameter:

q =
Ωx

(
1− 3

2χ
)
− 1

2Ωm − Ωr

Ωtot − 3
2Ωg

, (23)

where χ ≡ 1+wx is the deviation of the quintessence state parameter from that for the pure positive
cosmological constant. If the gravitons and the relativistic matter do not contribute to the present
state, the combination of the observational data and Eq. (23) results in the estimation for χ:

χ =
2

3
(1− q)−

Ωm

3Ωx
(1 + 2q) ' 0.16+0.11

−0.09. (24)

The deviation of the state parameter from that for the pure cosmological constant can be considered
as the justification of the initial guess about the material (not vacuum) source of the accelerated
expansion.

If amax � a0 (this is a well-grounded assumption because the graviton mass has to be small, see
below), then the minimum density is defined by the material terms with a slowest density decrease
due to the scaling factor increase. These are the negative cosmological constant produced by the
massive graviton and the quintessence with small χ. Hence we have the estimation for the maximum
scaling factor:

Ωg

Ωx
' a−3χ

max. (25)

As a result, Eqs. (24), (25) give the dependence of the maximum scaling factor on the graviton
density parameter. It is natural, the approach of wx to −1 and Ωx to 1 increase the maximum
scaling factor due to growing negative pressure of the quintessence.

Eqs. (20), (25) allow to find the minimum scaling factor. The corresponding equation is:

Ωga
3wx

(

−2a6 +
3

a4
max

a4 − 1

)

+ 2a3wx
(
Ωra

2 + Ωm

)
+ 2Ωxa

3 = 0. (26)

If wx ' −1 and amax � 1 then amin '
√

Ωg� (2Ωr). It is obviously that the minimum scaling
factor can not be less than that corresponding to the radiation domination epoch. In this case we
have the well-known condition (if the universe thermalized):

ρmax =
π2

30
g∗ (T )T 4

max, (27)

where g∗(T ) is the effective degeneracy factor, T is the temperature. Simultaneously, as the scal-
ing factor is roughly amin ' T0/Tmax (T0 ' 10−4 eV is the present temperature of the cosmic
background), we obtain the expression for the graviton density and the maximum scaling factor:
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Table 2. Estimations of the maximum graviton mass and the maximum scaling factor. GUT is the grand
unified theory phase transition, EW is the electroweak phase transition, NS is the nucleosynthesis,
RD is the end of the radiation domination.

Event T mg, g amax

GUT ∼ 1015 GeV ∼ 10−94
(
∼ 10−61 eV

)
10111

EW ∼ 100 GeV ∼ 10−82
(
∼ 10−49 eV

)
1053

NS ∼ 0.1 MeV ∼ 10−76
(
∼ 10−43 eV

)
1028

RD ∼ 1 eV ∼ 10−71
(
∼ 10−38 eV

)
107

Ωg ' 2Ωr

(
T0

Tmax

)2

, (28)

amax ' 3κ

√(
Ωx

2Ωr

)(
Tmax

T0

)2

.

The maximum admissible graviton mass and the maximum scaling factor are presented in Ta-
ble 2 (for the cosmological parameters we choose their mean values). The estimation of the max-
imum graviton mass means that the universe starts its expansion from the denoted “event” (the
dimensional mass can be re-calculated by means of the relation mg =

√
6ΩgH0~�c2).

As it was above mentioned, the RTG solves some basic problems, which inspire the inflation
paradigm in the modern cosmology: the flatness problem and the problem of the source of the
initial expansion. Moreover, the inflation does not solve the problem of the singularity [26], which is
lacking in the RTG. The problem of the relics in the RTG can be solved if amin is too large to provide
the sufficient for their creation Tmax. However, the problem of the horizon remains: the size of the
causally connected domains at the moment of the last scattering of the cosmic background photons
is ∼100 Mps. In principle, this problem can be solved without inflation (see, for example [27]).
As the RTG eliminates singularity, it admits the physically meaningful oscillating solution with
increasing homogeneity and isotropy. Nevertheless, let us examine the compatibility of the RTG
with the inflation paradigm.

As it was mentioned, the feature of the RTG is the antigravitation produced by the massive
graviton in the strong gravitational fields. This causes the accelerated expansion at the initial stage
of the universe evolution and prevents from the singularity. However, the gravitational field is
produced by the matter therefore the character of the initial acceleration is defined by the form of
this matter. As an example, the relativist matter (radiation) results in the short acceleration stage

(inflation) tac = Ω3�2
g

[
1− 1�

√
2
]
�
(

3Ω5�2
r

)
(tac is the acceleration time) with the scaling factor

growing by only factor of root of two: aend�amin =
√

2. It is clear that such short inflation is not
sufficient for the solution of the horizon problem.

The appropriate choice is the inflation governed by the scalar field φ (inflaton). Let’s consider
the minimally coupled single scalar field with the potential V (φ). Then the initial evolution can be
described by the following system:

( ·
a

a

)2

=
1

3m2
pl




·
φ

2
+ V (φ)



−
m2

12a6
, (29)

··
φ+ 3φ

·
a

a
= −

dV

dφ
.
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Note, that at the beginning there exist no other material fields with the exception of the scalar field.
If at the beginning the potential energy prevails over the kinetic one, the exponential expansion

begins (the standard slowroll conditions have to be satisfied: mpl

∣
∣
∣dVdφ�V

∣
∣
∣� 1 and m2

pl

∣
∣
∣d

2V
dφ2�V

∣
∣
∣�

1). The simple estimation shows that the graviton term vanishes very quickly and the expansion
does not differ from that in the GR. The inflation ends when the sufficient energy transfers into the
kinetic form. Then the so-called reheating begins and the material fields are created. The natural
criterion providing this primordial inflation in the framework of the RTG is:

amin ≤ abegin � aend, (30)

where abegin and aend are the scaling factors at the beginning and at the end of the inflation,
respectively.

Let us consider the potential, which admits the primordial inflation solving the horizon problem
and, simultaneously, allows the second inflation describing the accelerated expansion at present.
Such models consider both inflations as a manifestation of the single scalar field (quintessential
inflation models, for review see [28]). For example, the potential [29]

V = λ
(
φ4 +M4

)
for φ < 0, (31)

=
λM8

φ4 +M4
for φ ≥ 0

corresponds to the case of the self-interacting λφ4− field for the negative φ (the value of the cosmic
background fluctuations requires λ ≤ 10−14) and provides the second acceleration on the rolling-
away tail of the potential, when φ −→ ∞ (quintessential tail). The present value of Ωx requires
M ' 8× 105 GeV .

The first inflation terminates at |φ| ∼ mpl and Eqs. (29), (30) result in (M � mpl):

aend � 3

√
m

mpl

√
λ
. (32)

Simultaneously,
ar

aend
'

1
√
λR

, (33)

where R ' 0.01 is the numerical factor defining the particles creation at the end of the first inflation
and the transit to the radiation domination [29]. At the beginning of the radiation domination,
when a ≡ ar, the temperature was

Tr ' λR
3�4mpl ' 103 GeV. (34)

Then roughly we have:

m� λ2R3�2mpl

(
T0

Tr

)3

' 10−52 eV, (35)

If we made the usual assumption about the 60-e folding expansion during the inflation then abegin '
aend × e−60. Hence we have the estimation for the graviton mass allowing the appropriate scaling
factor:

m ∼

√
12λ

mpl
φ2
in

(
aend × e

−60
)3
'

√
12

mpl
λ2Π3�2φ2

in

(
T0

Tr

)3

× e−180 (36)

' 10−157 φ
2
in

mpl
,
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where φin is the initial field and the graviton mass, which are expressed through the Planck mass.
Although |φin| � mpl, the obtained estimation is extremely low because it is very hard to “squeeze”
the universe down to the Planck scale in the condition of the strong antigravitation produced by
the massive graviton. Such low value for the graviton mass can not be attributed to some real
physics. However, we have not to consider this conclusion as the pessimistic estimation of the
incompatibility between the RTG and the primordial inflation picture because 1) our estimation
is the model-dependent and needs an additional investigation; 2) we have not to overestimate our
knowledge of the physics on the Planck scale; 3) the RTG can propose an alternative (oscillating)
scenario without primordial inflation.

It is of interest to consider the compatibility of the RTG with the second inflation picture,
which takes a place on the quintessential tail of the model under consideration. In the framework
of this model (see Eq. (31) (the below described picture is common for the different models of the
quintessential inflation, see [28]) we have the following evolutional stages: 1) First inflation. The
field φ � −mpl slowly rolls to zero. The potential energy dominates over the kinetic one. As a

consequence, the state parameter wx =
·
φ

2

�2−V
·
φ

2

�2+V

≈ −1. 2) Reheating and kination. φ > −mpl causes

the end of the inflation due to the kinetic term increase (wx −→ 1). The energy transfers to the

material fields. But the kinetic dominated scalar field decreases as ρx ≈
·
φ

2

2 ∝ a−6. The radiation
(and then the matter) domination begins. 3) The kinetic term vanishes and the potential energy
of the scalar field dominates again. Second inflation begins from which the universe never recovers
because the slowroll conditions are satisfied.

However, the RTG provides the quite natural exit from the eternal inflation due to the presence
of the negative cosmological constant-like term in Eq. (17). As V decreases as [29]

V ∼
λM8

m2
pl ln

4
(

a
aend

) , (37)

the inflation stops when

a ' aend exp




M2
√
mmpl

√
λ

mm2
pl



 ∼ 10−24 exp

(
10−14

√
m [eV ]

)

. (38)

From Eq. (38) the maximum mass of the graviton is ' 10−31 eV (criterion amax > 1), however, the
maximum scaling factor increases exponentially with the m decrease in contrast to Eq. (25) because
wx ≈ −1 in the late universe. Here we do not consider the additional numerical estimations because
they are model-dependent. Nevertheless, it is obviously that the combination of the first inflation
condition (amin � aend) with the second inflation break can result in the exponentially large amax.

4 Conclusion

The RTG is able to solve some important cosmological problems. It does not contain the cosmo-
logical singularity and derives the flatness of the global spacetime from the field equations. The
antigravitation produced by the massive graviton in the strong gravitational field solves the prob-
lem of the source of the initial expansion and allows to escape the relics creation. However, the
problems of the horizon and the present accelerated expansion of the universe remain. The former
is solvable in the framework of the oscillation paradigm. The RTG admits only closed evolutional
scenario in virtue of the causality principle and thereby the causal connections with the extremely
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distant domains can result from the previous cycles of the oscillation (remind that there is no the
singularity in the RTG). However, the problem of the accelerated expansion needs some additional
hypothesis. The appropriate modification of the RTG Lagrangian is awkward because the structure
of its massive part is defined by the polarization properties of the gravitational field. The alterna-
tive way is the modification of the energy-momentum tensor due to an inclusion of the so-called
quintessence term with the state parameter lying between the limits of the strong and weak energy
conditions that causes the repulsion and, as a result, the accelerated expansion.

In the framework of the latter approach there is the single scenario:

1. First acceleration (inflation), which can be governed by the scalar field (exponential inflation)
or by the massive gravitons (power-mode inflation that occurs if the radiation dominates at
the beginning of the expansion).

2. First deceleration due to the radiation (and then matter) domination. The massive gravitons
do not contribute due to the increased scaling factor.

3. Second acceleration (inflation) due to the quintessence domination. The massive gravitons do
not contribute.

4. Second deceleration due to the negative cosmological constant-like action of the massive gravi-
tons.

5. Contraction produced by the Massive gravitons.

At the first stage, there are the certain constraints on the graviton mass: the initial scaling factor
has to provide the temperature, which is sufficient for the formation of the universe in its known
form. At least, this temperature has to exceed that required for the nucleosynthesis. As a result,
mg < 10−43 eV . These constraints become extremely exacting in the case of the primordial inflation
governed by the scalar field because it is hard to squeeze the universe down to the Planck size. One
could say that the RTG is hardly compatible with this primordial inflation.

The second inflation can be considered in two ways. Firstly, we can suppose the constant state
parameter for the quintessence: wx > −1. In this case the massive graviton terminates the inflation
for the scaling factor, which is power dependent on the graviton mass. The rough estimation for
the above given mg results in the relative scaling factor ∼ 1028 (if its present value is 1). Secondly,
we can consider the quintessence as some scalar field with the rolling-away potential. This is a
more complicated situation because the state parameter changes and approaches −1 in the late
universe. However, the massive graviton stops the inflation in this case too, but the dependence of
the maximum scaling factor on the graviton mass is exponential. As the latter approach is based
on the artificial model building, the problem of the late universe evolution in the framework of the
RTG needs an additional investigation.

In spite of the success in the agreement of the RTG with the modern observational data, the
unsolved problems remain:

1. The horizon problem and the initial expansion of the universe remain unexplored in the RTG.
There are some doubts about the compatibility of the RTG with the primordial inflation
governed by the scalar field.

2. The quintessential scenarios need a more detailed investigation. Moreover, the nature of the
quintessence is still unknown and this hypothesis faces some typical problems:

(a) the quintessence has to be extremely weakly coupled with the usual matter;
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(b) it is probably that the quintessence has to be a very light [30];

(c) the quintessence would generate the corrections to the gauge coupling.

3. And at last, why is the graviton so light? It is necessary to explore the connections of the
RTG with the modern field theory.
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